
TeraScale

Scalable Implicit Solver 
Interoperability via the ESI 

Standards Effort

Robert L. Clay
http://www.eterascale.com

18 October 2001
LACSI Symposium

Sante Fe, NM



TeraScale

Overview of this Presentation

l Background on the ESI effort – who, what, why
l Core object/component abstractions

» ESI base classes (base interfaces)
» Plug-&-play solvers and solver library interoperability

l Status and plans for the ESI effort



TeraScale

ESI Participants and URL’s

l DOE, academic, and industrial initiative, building on 
previous efforts.
» ANL, LANL, LBL/NERSC, LLNL, ORNL, SNL
» U.C. Davis, U. Indiana, U. Utah
» TeraScale, LLC

l Home web site: http://z.ca.sandia.gov/esi
» general background and voting info
» email archives

l Distribution site: http://www.eterascale.com/esi
» CVS repository, headers, and specification
» Reference implementation

l Technical forum: if-forum@z.ca.sandia.gov



TeraScale

What’s the ESI about?

l Standards effort for interface design, specification, 
and prototyping:
» scalable sparse linear solution services and operators
» discretization abstractions (e.g., FEI, structured mesh, …)
» languages to include C, C++, Fortran (JAVA?)

l We are developing an integrated system of object-
oriented interface specifications for shared, scalable, 
solver components.

l Our focus is on obtaining a long-term solution 
suitable for tera-scale applications (e.g., ASCI).

l We encourage participation in technical discussion 
and development.



TeraScale

Optimization

Sparse Linear Algebra -
do we need components?

Application

Krylov Solver Preconditioner

Eigen-solver

Multi-level
operations

Various Matrix
class/structure

implementations
data

results



TeraScale

Many-Many

Lib B Lib CLib A

ALE3D InDepsSierra ...

This is bad for users - too difficult to swap 
solvers,and the solvers don’t interoperate.



TeraScale

Many-1-Many

Lib B Lib CLib A

Structured
Mesh1

Finite
Elements

Structured
Mesh2, ...

ALE3D InDepsSierra ...

Better for users - discretization abstraction 
supports multiple solvers. However, solvers still 

don’t interoperate.



TeraScale

Many-1-1-Many

Structured
Mesh1

Finite
Elements

Structured
Mesh2, ...

VectorPC Matrix
Krylov
Solver

Multi-Level
Operators

Eigen
Solver

Lib B Lib CLib A

ALE3D InDepsSierra ...

Better yet - discretization abstractions map into a 
‘standard’ solver space, where the solvers are 

designed to interoperate.



TeraScale

Abstraction Layers

Discretization
Abstractions

Solver services

Solver libs

Math kernels

Linear Object Abstractions

Krylov
Solver

VectorPC Matrix

Multi-Level
Operators

Eigen
Solver

Engineering & Physics (Modeling) Codes

ALE3D InDepsSierra

Solver Libs

Lib A

...

Physics Discretization Abstractions

Structured
Mesh1

Finite
Elements

Structured
Mesh2, ...

Application codes

Math Kernels

LAPACK Optimized
LibsBLAS ...

Operator

Direct
Solver

...Lib CLib B



TeraScale

ESI Object Model

ESI Object

ESI ObjectImplementation

ESI BaseClassExtensions

ESI BaseClass

ESI BaseClassExtensions

...

Core Object Behavior

Class Behavior - general

Class Behavior -
specific extensions

User Component

Specificity of behaviour



TeraScale

ESI Inheritance Scheme
– Initial Proposal -

ESI Core
Object

Map Vector Solver Matrix Precond.

RowAccess PointerAccess ...

Matrix
Implementation 1

Matrix
Implementation 2

Matrix Interfaces



TeraScale

ESI Inheritance Scheme
- Next Proposal -

ESI Core
Object

Map Vector Operator

Solver Matrix Precond.

RowAccess PointerAccess ...

Matrix
Implementation 1

Matrix
Implementation 2

Matrix Interfaces



TeraScale

ESI Inheritance Scheme - Actual



TeraScale

Multiple Inheritance – good, 
bad, or irrelevant?

l Why not have OperatorTranspose peer to Operator?
» OperatorTranspose implementations will have both ‘apply’ 

and ‘applyTranspose’.
» Similar situation for Preconditioner classes.



TeraScale

Multiple Inheritance --
think of building-blocks

Interface1 Interface2MyObject

Inheriting multiple standard interfaces makes
MyObject “plug-compatible” in multiple roles.

Courtesy of Alan Williams (SNL)



TeraScale

Preconditioning a Solver with 
an ESI Operator

ESI Operator

ESI Operator

MySolver

Preconditioner ArgumentESI Operator

ESI Operator

ESI Operator

MySolver

MyPreconditioner

MyMatrix

Anything that supplies ESI Operator functionality
can be plugged in and used as a preconditioner.

Courtesy of Alan Williams (SNL)



TeraScale

ESI API characteristics
l Strengths

» ‘standard’, library-neutral interfaces – ESI compliant implementations 
are interoperable, even if they come from different libraries

» flexible, modular design – lots of possible combinations
» binding to existing libs is straightforward
» ‘component’ ready – abstract interfaces w/ ‘query interface’ method
» templated types (‘complex’ type support ‘easy’)
» extensible
» solver developers can extend their list of users via ESI bindings
» solver users can extend their list of solvers available through one API

l Weaknesses
» C++ only today – SIDL mapping close behind (C, Fortran, Java?)
» initial complexity of using the interfaces rather high (due to templated 

types and multiple inheritance) – reference implementations help
» ‘common’ model/API can’t capture (and isn’t intended to either) the 

full richness of all solver packages



TeraScale

Current Status
l ESI v1.0 interfaces have passed the first vote, and second vote 

is expected to pass w/in a month
» It took ~3 years to get to the 1.0 spec!
» http://www.eterascale.com/esi has current distribution, including 

reference implementation.
» Standard’s group is focused on wrapping up v1.0 release and 

polishing up the package bindings and reference implementation.

l Work is underway or complete on several packages:
» TSC reference implementation (RLC)
» ISIS++ bindings (ABW/BA)
» Trilinos bindings (ABW/MH)
» QMRPACK bindings (NN/MG/RLC)
» SPOOLES 2.2 bindings (RLC/CA/MG/NN)
» PETSc (BS/SB/LCM)



TeraScale

Plans
l We’re working on a set of interfaces for FE / solver coupling –

derivative work of the FEI 2.0
» http://www.eterascale.com/fei-lite
» Modularized vs. monolithic FEI 2.0
» Augments ESI interfaces
» Could be an FEI 3.0, but will probably be proposed as part of the 

ESI spec instead.
l We’re also working on block matrix/vector abstractions:

» Hybrid block matrix/vector classes
» Generalized/derived from Daniel White’s 2x2 hybrid block classes.

l Other abstractions we need to address:
» Structured mesh ‘loading’
» Eigen solver abstractions
» Better ways of handling ‘exceptions’
» Multi-level methods


